

Prompt Project – Fejlesztői Dokumentáció
Ez a dokumentum a Prompt Project (belső codename: „beszerzes”) technikai specifikációját és architekturális felépítését tartalmazza. Célja, hogy új fejlesztők számára gyors belépési pontot biztosítson a rendszer megértéséhez.
1. Architektúra Áttekintés
A rendszer egy klasszikus, szeparált frontend-backend architektúrára épül.
Backend
· Runtime: Node.js (v18+)
· Web Server: Express.js
· API: Hibrid megközelítés
· GraphQL: Az üzleti logika 90%-a itt zajlik (CRUD műveletek, listázások).
· REST: Speciális esetekre (Fájlfeltöltés, Auth, Webhookok, Invoice AI).
· Database: MySQL
· ORM: Prisma Client
· AI Integráció: OpenAI API (Node.js SDK)
Frontend
· Framework: React 18
· Build Tool: Vite
· State Management / Data Fetching: Apollo Client (GraphQL cache)
· Styling: Tailwind CSS
· Routing: React Router DOM
2. Adatbázis Séma (Prisma)
A teljes séma a prisma/schema.prisma fájlban található. Az alábbiak a legfontosabb entitások:
2.1 Core Entitások
· Munkak (Projektek): A rendszer központi eleme.
· Munka_kod (PK): Int
· Nev_rovid: String (pl. "24005") - Ezt a kódot használja a rendszer az összekapcsoláshoz.
· Allapota: String (Státuszkezelés)
· Beszerzes (Procurement): Beszerzési tételek és költségek.
· Project_kod: String - Foreign Key jellegű kapcsolat a Munkak.Nev_rovid mezőhöz.
· invoice_no: String - Számlaszám (Invoice AI tölti).
· customers (Megrendelők): Ügyfél törzsadatok.
2.2 Felhasználók és Jogosultságok
· Kezelo: Felhasználói fiókok.
· securePwHash: Bcrypt hash.
· Role & Permission: RBAC (Role-Based Access Control) rendszer. A kapcsolatokat a KezeloRole és RolePermission kapcsolótáblák kezelik.
2.3 Operatív Entitások
· worksheets (Munkalapok): Helyszíni munkavégzés.
· items: JSON/Text mező a felhasznált anyagoknak.
· signature: Base64 kódolt aláírás kép.
· notification: Belső rendszerüzenetek.
3. Invoice AI Implementáció
A számlafeldolgozó modul a routes/invoiceAi.js fájlban található. Ez a rendszer technológiailag legkomplexebb része.
3.1 Működési Folyamat
1. Upload: A kliens egy POST /api/invoice/upload hívással feltölti a PDF-et (multer middleware kezeli a memóriában).
2. Parsing: A backend a pdfjs-dist könyvtárral elemzi a PDF-et:
· Kinyeri a nyers szöveget (getTextContent).
· Rendereli az oldalakat képként (canvas és viewport render).
3. AI Analysis: A kinyert adatokat (szöveg + képek) elküldi az OpenAI API-nak (gpt-4o vagy gpt-4-turbo modell).
· A prompt utasítja a modellt, hogy strukturált JSON formátumban adja vissza a tételeket, árakat, devizanemet és a talált projektkódokat.
4. Project Matching: A válaszban kapott projektkódokat (pl. "24005") a rendszer összeveti a Munkak táblával.
5. Response: A feldolgozás eredménye egy JSON objektum, amit a frontend megjelenít ellenőrzésre.
4. API Végpontok
GraphQL API
A sémák a graphql_schema/ mappában, a feloldók a resolvers/ mappában találhatók.
· Query:getProjects, getSupplies, getWorksheets
· Mutation:createProject, createSupply, updateWorksheet
REST API
· POST /auth/login - Bejelentkezés (HTTP-only cookie beállítása).
· POST /api/invoice/upload - PDF feltöltés.
· GET /api/invoice/status/:jobId - Aszinkron feldolgozás állapotának lekérdezése (polling).
· POST /api/invoice/save - Validált tételek mentése az adatbázisba.
5. Fejlesztői Környezet
Telepítés
Backend függőségek npm install # Frontend függőségek cd static npm install
Környezeti Változók (.env)
A rendszer működéséhez elengedhetetlen egy .env fájl létrehozása a gyökérben:
DATABASE_URL="mysql://user:pass@localhost:3306/beszerzes" JWT_SECRET="super_secret_key" INVOICE_AI_OPENAI_APIKEY="sk-..."
Futtatás
Backend (Nodemon) npm run start # Frontend (Vite Dev Server) cd static npm run watch
Adatbázis Migráció
A Prisma sémaváltozások érvényesítése:
npx prisma migrate dev --name init
6. Tesztelés
· E2E Tesztek: A cypress/ mappában találhatók.
· Futtatás: npm run cy:docker:admin
· Egységtesztek: Jelenleg a kritikus utils függvényekre korlátozódik.

